استفاده از شبکه بازگشتی nar برای پیش بینی غلظت مونوکسید کربن
Authors
abstract
زمینه و هدف: آلودگی هوا یکی از مشکلات مهم شهر های بزرگ محسوب می شود. یکی از اهداف مسئولین شهری آگاهی از میزان کیفیت هوا در آینده است؛ برای پیشبینی کیفیت هوا، باید غلظت هریک از آلاینده ها مدلسازی شده و با استفاده از مدل ایجاد شده، نسبت به پیشبینی مقادیر هریک از آلاینده ها اقدام شود. با توجه به اینکه مونوکسید کربن یکی از آلاینده های مهم هوا است، و تاثیرات زیانباری بر سلامت انسان دارد. روش بررسی: در این مقاله به مدلسازی و پیشبینی 24 ساعته غلظت مونوکسید کربن با استفاده از شبکه های عصبی بازگشتی nar و مدل آماری arma پرداخته شده و سپس نتایج این دو روش با یکدیگر مقایسه شده است. برای این منظور از داده های سال 2009 از 29 نوامبر تا 31 دسامبر، مربوط به غلظت آلاینده مونوکسیدکربن اندازه گیری شده در ایستگاه آزادی از ایستگاه های پایش کیفیت هوا متعلق به سازمان محیط زیست استان تهران استفاده شده است. یافته ها: نتایج مدلسازی نشان می دهد که شبکه عصبی nar دارای دقت بهتری نسبت به روش arma برای پیشبینی و مدلسازی غلظت مونوکسید کربن است. شبکه عصبی nar با mse کمتر از 6/1 دقت مناسبی در پیشبینی غلظت آلاینده مونوکسید کربن داشت. همچنین همبستگی بین مقادیر پیشبینی شده و مقادیر واقعی برای شبکه عصبی nar، 84 درصد می باشد. در حالی که مدل arma دارای mse برابر 46/5 و ضریب همبستگی 72 درصد می باشد. نتیجه گیری: می توان نتایج پیشبینی را جهت آگاه سازی عمومی در اینترنت و شبکه های جمعی منتشر کرد. همچنین نتایج مدلسازی و پیشبینی می تواند برای مدیریت بهتر آلودگی هوا توسط مدیران مورد استفاده قرار گیرد. نتایج این تحقیق نشان می دهد که شبکه عصبی nar قابلیت بسیار بالایی در پیشبینی سری زمانی غاظت مونوکسیدکربن دارد.
similar resources
استفاده از شبکه بازگشتی NAR برای پیش بینی غلظت مونوکسید کربن
زمینه و هدف: آلودگی هوا یکی از مشکلات مهم شهرهای بزرگ محسوب میشود. یکی از اهداف مسئولین شهری آگاهی از میزان کیفیت هوا در آینده است؛ برای پیشبینی کیفیت هوا، باید غلظت هریک از آلایندهها مدلسازی شده و با استفاده از مدل ایجاد شده، نسبت به پیشبینی مقادیر هریک از آلایندهها اقدام شود. با توجه به اینکه مونوکسید کربن یکی از آلایندههای مهم هوا است، و تاثیرات زیانباری بر سلامت انسان دارد. روش بررسی: ...
full textمقایسة دو روش مدلسازی با استفاده از شبکة عصبی- فازی در پیش بینی غلظت آلایندة مونوکسید کربن
پایش و پیشبینی مشخصههای کیفیت هوا در مناطق شهری یکی از چالشهای محیط زیست انسانی محسوب میشود. این مهم وابسته به عوامل متعددی مانند توپوگرافی، اقلیم، جمعیت و شبکة حمل و نقل است که نحوة تعامل این عوامل مکانی به عنوان پدیدهای دینامیک، غیر خطی و دارای ابهام عنوان شده است. در این تحقیق به منظور پیش بینی و مدلسازی میزان آلاینده مونوکسیدکربن از شبکة عصبی- فازی و GIS در قالب دو مدل متفاوت استفا...
full textمقایسة دو روش مدل سازی با استفاده از شبکة عصبی- فازی در پیش بینی غلظت آلایندة مونوکسید کربن
پایش و پیش بینی مشخصه های کیفیت هوا در مناطق شهری یکی از چالش های محیط زیست انسانی محسوب می شود. این مهم وابسته به عوامل متعددی مانند توپوگرافی، اقلیم، جمعیت و شبکة حمل و نقل است که نحوة تعامل این عوامل مکانی به عنوان پدیده ای دینامیک، غیر خطی و دارای ابهام عنوان شده است. در این تحقیق به منظور پیش بینی و مدل سازی میزان آلاینده مونوکسیدکربن از شبکة عصبی- فازی و gis در قالب دو مدل متفاوت استفاده ...
full textمقایسه کاربرد روش های شبکه عصبی مصنوعی و رگرسیون خطی چندمتغیره براساس تحلیل مؤلفه های اصلی برای پیش بینی غلظت میانگین روزانه کربن مونوکسید: بررسی موردی شهر تهران
هدف از این مقاله، پیش بینی میانگین غلظت روزانه کربن مونوکسید در هوای شهر تهران با استفاده از دو مدل شبکه عصبی مصنوعی و رگرسیون خطی چندمتغیره برحسب تحلیل مؤلفه اصلی (pca) است. از روش pca برای از بین بردن هم راستایی چندگانه (multicolinearity) بین متغیرهای ورودی و تفسیر بهتر نتایج مدل رگرسیونی استفاده شده است. همچنین با استفاده از شبکه عصبی feed-forward با یک لایه پنهان نیز مدل مناسب برای این ام...
full textپیش بینی میزان غلظت آلاینده های هوای تهران با استفاده از شبکه عصبی مصنوعی
در این تحقیق شبکه عصبی مصنوعی جهت برآورد و پیش بینی غلظت گازهای آلاینده هوا به کار رفته است.با توجه به خطر آلودگی هوا در شهر تهران و ایجاد مشکلات زیست محیطی و بیماری های خطرناک تنفسی و پوستی به ویژه برای کودکان و سالمندان و نیاز شدید به کنترل آن ، این تحقیق در جهت برنامه ریزی و کنترل این مشکل در تهران و همچنین شهرهای بزرگ دیگر انجام گرفته است. برای این منظور از آمار غلظت گازهای آلاینده هوای ثبت...
full textارزیابی دقت شبکه عصبی مصنوعی بازگشتی نارکس در پیش بینی بارش روزانه در استان کرمان
بارش یکی از پارامترهای مهم اقلیمشناسی و سایر علوم جوّی که از اهمیّ تّ والای یّ در حیات بشر برخوردار است. در سالهای اخیر، سیل و خشکسالی خسار های فراوانی را در بس یّاری از مناطق جهان در پی داشته است. پیش بینی بارش در مدیریت و هشدار این معضلا نق شّ مهمی بر عهده دارد. امروزه شبکههای عصبی مصنوعی از جمله روشهای نوین م یّباش دّ ک هّ برای تخمین و پیشبینی پارامترها با استفاده از ارتباط ذاتی بین دادهه اّ توس عّه یا...
full textMy Resources
Save resource for easier access later
Journal title:
علوم و تکنولوژی محیط زیستجلد ۱۸، شماره ۳، صفحات ۱۲۷-۱۴۰
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023